Monthly Archives: September 2019

//September

中文信息处理实验室研发的“北京冬奥项目知识图谱资源及问答系统”正式发布

2019-09-27T18:00:51+00:00

中文信息处理实验室研发的“北京冬奥项目知识图谱资源及问答系统”正式发布 9月26日上午,由中国科学院软件研究所中文信息处理实验室负责研发的“北京冬奥项目知识图谱资源及问答系统”在北京语言大学正式发布。教育部、国家语委、北京冬奥组委、中国科学院软件研究所和北京语言大学相关领导及专家出席发布会。 会上,项目负责人、中国科学院软件研究所孙乐研究员详细介绍了“基于知识图谱的北京冬奥项目智能问答系统”的研发进展及成果特色。项目构建了大规模知识图谱,完整覆盖5类冬奥核心实体,设计多种类型的知识展示服务,研发了语音和文字两种输入方式的“智能问答平台”,提供实时便捷的冬奥会问答服务,为普及冬奥知识、宣传冬奥文化提供了全方位、立体化手段。 孙乐研究员介绍项目情况 中科院软件研究所副所长肖作敏研究员代表软件所发表致辞,首先感谢了教育部、国家语委和北京冬奥组委的指导,感谢项目合作单位北京语言大学的提供的大力支持。他表示,项目立项之初,软件所高度重视,深感在普及冬奥知识、宣扬冬奥文化方面的责任重大。未来将继续在人、财、物方面给予项目研发团队大力支持,持续钻研技术、锻造品牌,研发更多的智能语言服务成果,全力以赴地服务好北京冬奥会,共同谱写“智能”新篇章。 肖作敏副所长致辞 北京语言大学副校长张旺喜教授在致辞中表示,冬奥项目知识图谱资源及问答系统特色鲜明、优势突出,期待项目再上一个更高的台阶。北京语言大学将继续与中科院软件研究所密切合作,为冬奥会提供精益求精、臻于极致的服务。 教育部语信司副司长刘宏致辞。他首先充分肯定了项目成果,该项目丰富并完善了冬奥知识问答服务,本次发布的“北京冬奥项目知识图谱资源及问答系统”,是落实2017年《北京冬奥会语言服务行动计划》的又一重要体现。他认为,要继续加强多方合作,在体制机制方面进行大胆探讨与创新,各相关部门要继续发挥应有职能,切实为2022年北京冬奥会创造良好环境,彰显中国语言的独特魅力。 北京冬奥组委对外联络部副部长万学军在致辞中表示,冬奥组委高度重视科技和人工智能,今天的项目成果发布会适逢其时,“人类与计算机对话服务”将为北京冬奥会提供更加丰富的手段,提供更加多元的智慧,为世界奉上一届精彩、非凡、卓越的体育盛会。 启动仪式开始。与会领导及专家在倒计时主屏幕前,共同启动了“北京冬奥项目知识图谱资源”及“小奥智能问答系统”,国家语委、教育部语信司副司长刘宏宣布:“北京冬奥项目问答系统正式上线”。全场观众见证了这一重要时刻。 与会领导共同启动北京冬奥项目问答系统 仪式结束后,项目组主要负责人接受多家主流媒体的专访。后续,项目研发团队还将继续对“北京冬奥项目知识图谱资源”及“小奥智能问答系统”进行完善,并围绕冬奥赛事组织、冬奥文化宣传的实际需求,持续发布更多的成果,为北京冬奥会的智能语言服务提供强有力的技术支撑。 发布会现场合影 供稿人:付成      

中文信息处理实验室研发的“北京冬奥项目知识图谱资源及问答系统”正式发布 2019-09-27T18:00:51+00:00

北京大学王选计算机研究所孙薇薇副教授应邀做学术报告

2019-09-18T08:57:32+00:00

北京大学王选计算机研究所孙薇薇副教授应邀做学术报告 2019年9月17日下午,应实验室孙乐研究员和韩先培研究员邀请,北京大学王选计算机研究所孙薇薇副教授到访实验室,为实验室师生做了题为“English Resource Semantics: Linguistic Design and Neural Parsing”的学术报告。 孙老师的报告是关于图表征的句子的语义表示和处理,报告主要分为四个部分。首先,孙老师简要阐述了自然语言表义的几个主要方面,分别是:predicate-argument structure, quantification and scope, presupposition and focus, word sense differentiation, lexical decomposition, anaphoric coreference, grounding, tense and aspect, information structure, discourse structure等,并指出在语义解析领域,每一个SemBank通常只能捕获其中几个方面的语义,因此SemBank必须要在标注方案所捕获的信息、标注代价和标注一致性等方面做出权衡。此外,报告还对语义图相较于语法树在表征句子语义时的优势进行了直观解释。 其次,报告从 FraCaS 入手,系统阐述了目前流行的几种语义图框架(如:DM、PSD、EDS、和AMR等)的语义表示方法、优缺点及其所能捕获的语义信息。其中重点介绍了LinGO English Resource Grammar和 LinGO Redwoods TreeBank等两种重要的英语资源语义(English Resource Semantics)。 然后,报告以上述的几种语义图框架为基础,重点介绍了基于AMR语义表示框架的几个重要的语义解析方法,分别是factorization-based、composition-based、transition-based和translation-based方法。其中孙老师还介绍了组合语义(Compositional Semantics)以及超图替换文法(Hyperedge Replacement Grammar)的概念及其在语义解析中的应用。 最后,报告对用语义图进行句子的语义表示在自然语言处理任务中的应用(如:机器翻译、实体链接、自动文摘等)进行了总结。孙老师从还从多语言语义解析、跨框架的语义解析以及语义图的构建等多个层面对未来的语义解析工作进行了展望。 报告结束后,孙薇薇老师与实验室师生进行了热烈互动,对实验室师生提出的问题做出了细致的回答。孙老师的报告信息量非常大,实验室师生获益良多。 责任编辑:马龙龙 编辑:聂浩      

北京大学王选计算机研究所孙薇薇副教授应邀做学术报告 2019-09-18T08:57:32+00:00